Introduction In the world of data integration, Extract, Transform, and Load (ETL) pipelines play a critical role in moving and transforming data from various sources to target systems. One crucial step in the ETL process is quality testing, which involves checking data for defects to prevent system failures. Ensuring data quality is paramount for accurate decision-making and business success. This blog post will explore the seven key elements of quality testing in ETL pipelines: completeness, consistency, conformity, accuracy, redundancy, integrity, and timeliness. Data Completeness Testing Data completeness testing is fundamental in ETL testing, focusing on ensuring the wholeness and integrity of data throughout the pipeline. It involves validating that all expected data is present, with no missing or null values. Ensuring data completeness prevents issues like data truncation, missing records, or incomplete data extraction. Data Consistency Testing Data consistency testing confirms t...
The Ultimate Guide to Big Data, Data Analysis and Data Engineering for Finance and Business Intelligence Lovers